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Abstract

Topology optimization has experienced rapid development over the past two 

decades and has been widely applied in fields such as aircraft structures, civil 

engineering, and transportation equipment. Common topology optimization methods, 

such as density-based methods and level set methods, focus on global variable 

optimization. These global optimization approaches often consume substantial 

computational resources and are not suitable for parallel optimization. In contrast, 

structures in nature evolve from a combination of numerous local optimization 

problems, where each cell unit adjusts on the basis of its perception of the surrounding 

environment, leading to the formation of biological structures. This paper proposes a 

novel heuristic topology optimization method, the biomimetic moving-mesh (BMM) 

method, inspired by biological cell growth and evolution. The BMM method uses the 

positions of mesh nodes as variables to simulate cellular expansion and contraction, 

thereby creating a new optimization approach. Compared with traditional topology 

optimization methods, the BMM method offers smoother meshes and is more suitable 

for handling large-scale parallel optimization problems.
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1. Introduction

Over the past two decades, topology optimization (TO) has sparked widespread 

interest among engineers and researchers because of its powerful ability to determine 

optimal material layouts within a design domain for desired performance. Structural 

topology optimization is widely used in the fields of aircraft design [1], engineering 

architecture [2], vehicle architecture [3], mechanical parts [4], and metamaterial 

microstructure design [5]. There are many optimization objectives for structural design 

in various disciplines, such as acoustic [6], optical [7], force [8], electrical [9], magnetic 

[10], thermal [11], and other physical properties.

In 1988, Bendsøe and Kikuchi [12] introduced the homogenization method, which 

laid the foundation for generating optimized topologies in the design domain. This 

marked the beginning of significant developments in topology optimization. In recent 

years, various topology optimization methods have been developed, each with specific 

functions. Notable methods include the solid isotropic material with penalization 

(SIMP) method [13], the evolutionary structural optimization (ESO) method [14], the 

level set method (LSM) [15], and the moving morphable components (MMC) method 

[16]. These methods have been applied to solve various problems, including heat 

conduction [17], material design [18], and concurrent design [19].
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One limitation of most traditional topology optimization methods is that their 

results are derived from a predefined structured grid, necessitating extensive 

postprocessing. During this phase, the finite element mesh must be repartitioned and 

recalculated, with the optimization effects subsequently revalidated. Although 

approaches such as the level set method and moving-morphable components (MMCs) 

[16] generate smooth boundaries, in practice, they achieve this by smoothing the edges 

of the initial grid and adjusting the stiffness matrix of the boundary elements. This can 

lead to computational outcomes that are not entirely accurate.

In topology optimization, determining the boundaries during the optimization 

process is a key challenge. For example, in methods such as the level set and MMC 

methods, the finite element mesh of the structure is separate from the geometric model 

description. Particularly in the LSM [20], when boundaries intersect the fixed finite 

element mesh, quadrilateral elements are bisected, which reduces the stiffness of the 

elements and fails to simultaneously meet the requirements for smooth geometric and 

finite element boundaries. Although boundary-adaptive refinement of the finite element 

mesh can increase boundary precision, this treatment significantly reduces the 

computational efficiency.

Existing topology optimization methods often fail to achieve smooth 

synchronization between finite element meshes and geometric descriptions. Most 

current approaches are based on a global perspective, focusing on calculating the 

overall descent direction, with limited attention given to local adaptive adjustment 

methods. If a topology optimization method could be developed that dynamically 
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integrates the optimization process with the finite element mesh model, it would enable 

structures to satisfy both finite element and geometric boundary smoothness 

requirements. This advancement would facilitate the simultaneous integration of finite 

element analysis and CAD modeling, thus enhancing the overall design process. To 

achieve this, the structure of this article is organized as follows. Chapter 2 focuses on 

introducing the evolutionary background of biological structures derived from cellular 

development. Chapters 2.1 through 2.3 collectively introduce the biomimetic moving-

mesh method, which integrates contour boundary-driven shape optimization, material 

flipping for topological transformations, and adaptive mesh adjustments to increase 

computational accuracy. Chapter 3 presents simple examples showing the principles of 

the BMM method. Chapters 4 and 5 demonstrate the application of this method to 2D 

and 3D classic topology optimization problems and further analyze its advantages over 

other traditional topology optimization methods. Chapter 6 presents the conclusions 

and a discussion.

2. A biologically inspired topology optimization method

Before we present the proposed topology optimization method, we first discuss 

certain aspects related to topology optimization.

Strength optimization vs. stiffness optimization: For strength optimization, there are 

many strength criteria, such as the von Mises stress, maximum tensile stress, maximum 

elongation line strain, and maximum shear stress, etc. The sensitivity information can 

also be calculated on the basis of these parameters. If the strain energy density is chosen 
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as the strength criterion (although this is not a common strength criterion), the 

sensitivity calculation is consistent with the result of the stiffness optimization problem, 

so the stiffness topology optimization problem can be considered a special case of the 

strength topology optimization problem. Therefore, strength optimization is a more 

general optimization. To some extent, stiffness optimization is only a special case of 

strength optimization. Therefore, we believe that strength optimization warrants more 

research attention, as it is closely linked to the optimization of biological growth, which 

is inherently related to stress.

Global optimization vs. local optimization (or local evolution): Optimization methods 

are divided into global optimization and local optimization. Global optimization often 

requires finding a direction of descent, e.g., along a gradient. Here, the terms “global 

optimization” and “local optimization” refer not to the pursuit of global or local optimal 

solutions for nonconvex problems but rather to whether the optimization process 

requires global information or local information. Derivation is a time-consuming 

problem for optimization problems with a particularly large number of variables, and it 

consumes a large amount of computational resources to obtain the global gradient, 

which can be greatly accelerated if it can be split into many small local optimization 

problems. This is the reason why an algorithm more suitable for large-scale 

optimization can be inspired by a local biological evolution strategy.

Nature is a master of structural optimization. For example, the internal 

microstructure of the hornbill bird beak obtained very similar results to the gig voxel-

scale wing topology optimization performed by Niels Aage [21] via a computer in 2017, 
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which took several days to obtain the results via 8,000 CPU calculations, whereas the 

former results were only obtained by the organism's own adaptive growth and 

deformation to the environment. This shows that biological evolution is a very inspiring 

optimization method.

Furthermore, dynamic cell migration [22, 23] plays a crucial role in processes such 

as embryonic development, wound healing, and cancer cell metastasis. During dynamic 

migration, the boundaries of cell clusters expand or contract in response to external 

stimuli. These biological processes depend on factors such as cellular activities, 

environmental interactions, and functional requirements, which in turn shape cellular 

morphology, which is also the basis for bionics to construct structural forms. The 

expansion, contraction, fusion, and division of biological cells are governed by intrinsic 

critical thresholds that operate independently of overall control mechanisms.

As a parallel to this biological phenomenon, in the optimization model discussed 

in this paper, we analogize cell clusters to a finite element mesh, where the movement 

of cell boundaries is simulated through the dynamic adjustment of mesh nodes.

In this work, the biomimetic moving-mesh (BMM) topology optimization method 

is introduced within the framework of continuum medium mechanics, reflecting the 

biological logic of cells moving toward favorable conditions and away from 

unfavorable conditions. This method can be divided into three steps: adaptive 

movement of contour nodes, element material flipping, smoothing of contour meshes 

and uniform distribution of internal meshes.
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2.1 Adaptive movement of contour nodes

When we drive the movement of a structure's boundary, the shape of the 

topological structure changes, analogous to how the boundaries of biological cell 

groups continuously expand and contract in response to environmental stimuli.

Determining the movement step length for each boundary node is crucial for the 

optimization process. The relationship between a node’s average strain energy and its 

movement step length along the boundary normal can be expressed in the linear form 

.  represents the sensitivity of the unit distance of node movement 

with respect to the objective function (which is stress in strength problems and strain 

energy in compliance problems).  (danger point) is a constant vector, which means 

that when it exceeds a certain value, the node expands outward, and when it falls below 

a certain value, the node contracts inward. This value is determined by the volume 

fraction constraint, and the specific calculation formula is provided later.  is the 

movement step length along the boundary normal direction. In this context,  acts as 

a scaling factor for the movement step length. Notably, the relationship between step 

size and sensitivity is not limited to a linear relationship but can also be quadratic, as 

can other functional forms. In this paper, the simplest linear relationship is used for 

illustration.

To ensure stability during the iterative process, it is advisable to avoid movements 

exceeding half the length of an element in a single iteration. Hence, the scaling factor 

 should be set to control the maximum single movement step length to 

approximately 0.1 ~ 0.5 unit lengths.

( )- 0l D D D

0D

l




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During the optimization process, constraints on the volume fraction of the 

structure must be considered to ensure that the volume fraction approaches the target 

value after each iteration. The value of  can be derived from Eq. (1),

(1)

which is related to maintaining the volume fraction. The method of approaching volume 

constraints refers to the bidirectional evolutionary structural optimization (BESO) 

method.

The variables in the formula are explained as follows:

 represents the sensitivity of the volume fraction, i.e., the change in the total 

volume fraction when each node moves a unit length in the normal direction.

 represents the evolutionary rate, indicating the speed at which the volume 

fraction converges toward the predefined target constraint, commonly established at 

0.01.

 is the volume of the solid material in the current structure.

 is the target volume fraction.

 is the total volume of the design domain.

This formula determines the step size to be applied to each boundary node during 

the current iteration, contingent upon the volumetric change in the solid material. This 

approach provides a direct and uncomplicated mechanism to facilitate the displacement 

of boundary nodes.

However, while this approach excels in guiding shape optimization, it does not 

address the challenges associated with topology transformations. These issues are 

0D

 solid ( )- r V V  0D D A

A

r

solid V



V
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explored and addressed below.

2.2 Element material flipping enables topology transformation

In the process of structural optimization, as grid nodes are repositioned, the area 

(or volume) of certain elements may decrease significantly, rendering these materials 

potentially superfluous. One approach to address this involves transitioning materials 

on the basis of a predetermined area threshold, for example, 0.2. In general, materials 

within the design domain can be classified into hard and soft categories to differentiate 

the presence or absence of material in a given space. The Young's modulus of hard 

materials can be set to , whereas the Young's modulus of soft materials can 

be set to . Here, hard phase materials are converted to soft phase 

materials when the area (or the volume) of an element drops below this threshold, and 

vice versa.

It is imperative to consider the impact of node movement on the quality of mesh 

elements to ensure computational accuracy in structural optimization. Specifically, 

when elements become concave quadrilaterals or develop excessive aspect ratios (e.g., 

10:1), such configurations can significantly increase the error of the computational 

model. These scenarios may require interventions such as material flipping or other 

corrective measures to preserve the quality of the mesh, as depicted in Fig. 1. This 

emphasizes the critical need to maintain a high-quality mesh throughout the 

optimization process, thereby ensuring reliable and efficacious structural outcomes.

21(N / m )

9 2(N / m )1 10
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Fig. 1. Three scenarios that trigger material flipping.

2.3 Smoothing of contour meshes and uniform distribution of internal meshes

After adjusting boundary nodes and flipping materials in a structure, the quality of 

the internal mesh can be compromised. To rectify this and achieve a more uniform mesh, 

smoothing techniques are commonly applied to distorted grids. This mesh smoothing 

process aids in redistributing the grid nodes more evenly across the mesh, enhancing 

both the mesh quality and the computational accuracy. Importantly, this technique does 

not alter the overall shape of the structure or impact the integrity of the final results, 

ensuring that the structural performance remains unaffected.

The mesh smoothing process is depicted in Fig. 2, where the coordinates of each 

noncontour node are adjusted to the average coordinates of their four neighboring nodes. 

This technique can be mathematically represented by Eq. (2). By implementing this 

Case 1

Element’s volume < 0.2

Case 2

Element’s aspect ratio > 10

Case 3

Element’s isoparametric 
angle < 10° or >160°
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approach, the uniformity within the internal mesh is enhanced, which facilitates a 

smoother transition between the boundary and internal grids, effectively reducing 

discontinuities and abrupt changes.

Fig. 2. Adaptive tuning of nodes inside structured grids.

(2)

In structural optimization, meticulous management of contour nodes is essential 

for ensuring smooth boundaries. A specific method that capitalizes on the unique 

properties of contour nodes in determining their movement involves the following steps: 

initially, the vector defined by each contour node and the midpoint is computed between 

its left and right neighboring nodes ; subsequently, this vector 

is scaled by a factor  (e.g., 0.01) and added to the movement step of the contour 

nodes.

The rationale behind this methodology is to incorporate a dual-component strategy 

in each node’s movement during the optimization cycles, as shown in Eq. (3):

(3)

The first term  stems from the sensitivity analysis, termed the adaptive vector, 

( , ) ( , ) ( , ) ( , )( , )
4new

A x y B x y C x y D x yX x y   


left right( ) / 2i i i X X X



left right left right

( )
2 2

i i i i
i i i i i il D - D  

   
   



 
   

  
i 0i

X X X Xv n X n X

i il n
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which is responsive to environmental changes. This represents the product of the 

outward normal vector  at contour node  and its step length . The second term 

is the smoothing vector, which is specifically designed for contour nodes. This 

specialized approach for contour node movement ensures that the boundary edges 

become smoother.

The flowchart of the entire optimization algorithm is shown in Fig. 3.

in i il
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Fig. 3. Flowchart of the BMM topology optimization method.

Start

Define BMM parameters:
k, r

Define design domain, 
loads, boundary conditions, 

FE mesh

Carry out FEA and 
calculate boundary node 

sensitivity analysis

1. Determine the moving 
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nodes
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？

Converged?
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3. Simple examples showing the principle of the BMM method

Considering a periodic structure with square holes subjected to uniform biaxial 

compression, Figure 4 illustrates the stress distribution. The shape of the holes is 

modified by moving the boundary nodes in normal directions, as indicated by the 

arrows in the diagram, with the step length of movement linearly related to the stress 

magnitude. After 40 iterations, the shape of the holes gradually transitions from square 

to circular, optimizing the boundary shape of the structure through environmental 

adaptation.

Fig 4. Adaptive movement of internal borehole nodes under uniform biaxial 

compression.

Consider another scenario involving a structure with two square holes: the bottom 

of the structure is fixed, whereas the top faces a uniform downward load. During the 

loading phase, the material located between the two holes might exhibit lower stress, 

prompting the contour boundaries to progressively converge. As the volume of material 

in the middle diminishes and reaches a critical threshold, a change in the material state 

occurs, enabling the two holes to merge into a single larger hole, thereby facilitating a 
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topological transformation. Conversely, when the boundaries of hard material blocks 

intersect, the number of distinct holes may increase.

By identifying and adjusting unnecessary materials, this approach allows for 

automatic adjustment of the material topology during structural design optimization.  

Figure 5 illustrates this dynamic, showing how the merging of holes can result in 

profound changes in the structure’s topology, optimizing both the mechanical 

properties and material efficiency. This strategy not only facilitates the merging of holes 

but also allows for their splitting (for instance, when two endpoints of a hole move 

closer and connect, resulting in one hole being divided into two). Moreover, the strategy 

can also introduce methods to accelerate hole formation, such as selecting the solid 

element with the lowest stress or strain energy density from the structure to be flipped 

to a void every certain number of iterations. At this point, a new hole emerges, 

continuing evolution along the boundaries of new holes. However, methods for 

accelerating hole formation are still under investigation and remain unstable. Currently, 

the approach of merging holes alone can yield very effective optimization results.

Fig. 5. Examples of topological transformations
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In the iterative process depicted in Fig. 5, Stages 1-8 demonstrate shape 

optimization facilitated by the movement of boundary nodes. Between iterations 8 and 

9, a topological change is triggered through material flipping when boundary elements 

meet specific criteria. In iterations 9 to 10, it is evident that the distorted mesh left after 

the material flip is smoothed out in the following iteration, facilitating a more natural 

transition of the overall mesh configuration.

This sequence effectively shows how shape and topology adjustments are 

accomplished in structural optimization by combining node movement, material 

flipping, and mesh smoothing. This comprehensive approach not only optimizes 

structural designs for enhanced performance and efficiency but also progressively 

refines the shape and structure of the mesh.

4. Test results of the BMM method for 2D classic benchmark topological optimization 

problems

This section examines some of the classic problems in topology optimization for 

evaluation purposes, including three-point bending beams, L-shaped beams, cantilever 

beams, simply supported beams, two-force members, and quarter-circle arches. The last 

four are presented in the appendix. The optimization outcomes are compared with 

results obtained via the SIMP method and the BESO method.

(1) Simply supported beam problem
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Figure 6 displays the optimization results for the simply supported beam divided 

into a 60×30 mesh grid, where . The initial configuration features a 

rectangular structure with an array of square holes. As the optimization iterations 

progress, adjustments occur at the hole edges: contraction in areas of higher strain 

energy and expansion in regions of lower strain energy. By the 50th iteration, the 

boundary elements of some holes meet the critical condition for topological change. As 

the number of iterations increases, numerous holes begin to merge, leading to 

significant topological transformations and gradually forming the preliminary shape of 

the optimized structure. By the 470th iteration, the fragmented branches have been 

smoothed out, resulting in a more streamlined overall structure.

50% 

60

30

50 100

300 470
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Fig. 6. Iterative process of the BMM method for a simply supported beam problem.

The use of movable nodes in the BMM method allows for smoother edges, 

improving the geometric representation. In contrast, traditional optimization methods 

often produce jagged and rough mesh models, which require additional steps—such as 

geometric feature extraction, boundary smoothing, and mesh redivision—before 

implementation. This advantage of the BMM method streamlines the application of 

optimization results, enhancing efficiency and reducing manual intervention, making 

the outcomes more immediately applicable to practical engineering projects.

(2) L-beam problem

By comparing the optimization results of the L-shaped beam divided into a 60×60 

mesh grid in Fig. 7 with , we can discern the performance characteristics of 

various optimization methods. The L-shaped beam optimized by the BMM method 

features an inclined edge at the left support, demonstrating a degree of geometric 

complexity. In contrast, while the BESO method also attempts to depict sloped features, 

the limitations of the fixed grid can result in a disjointed appearance. Similarly, the 

SIMP method, constrained by its fixed grid, cannot smoothly represent sloped edges; 

instead, it indirectly suggests this feature through variations in color blocks.

Although methods using fixed grids can address this issue by employing finer mesh 

divisions, under the same grid count, methods utilizing movable grids exhibit a distinct 

advantage. This example underscores the BMM method’s superior capability in 

50% 
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geometric representation, which is particularly effective in handling complex structures 

such as inclined edges and curves.

Fig. 7. Comparing the optimization results of different TO methods for the L-beam problem.

5. Application of the BMM method in 3D topology optimization

In three-dimensional settings, the node-driven and material element-flipping 

methods remain applicable. Materials can be flipped on the basis of criteria such as the 

volume, aspect ratio, and concavity of the element. A detailed description is as follows:

1. Boundary motion

Similarly, the assumption that the nodal displacement is linearly related to 

sensitivity can also be applied. The only difference is that in three dimensions, the 

BESO: SI MP:

BMN:

L形梁问题，网格60*60，ρ =50％

60

60

24

24

BMM: 84.994

SIMP: 85,017BESO: 86.984
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normal vector of contour nodes is more difficult to define. The direction of the vector 

can be represented by the vector average of the contour node and the centroids of the 

surrounding solid elements.

2. Material Flipping

For elements with a volume less than 0.2 or nonconvex elements, the material of 

the element should be flipped.

3. Mesh smoothing

The homogenization of internal nodes can still be calculated via the average of all 

adjacent nodes of the internal node.

Figure 8 illustrates an example of applying the BMM method in a 3D model. 

Within a 60×30×30 mesh design domain, one side is fixed, and a downward force is 

applied on the opposite side with a volume fraction constraint of 20%.

This demonstrates that the BMM method excels not only in 2D scenarios but also 

in optimizing 3D structures. Employing node-driven and material element flipping 

strategies, the BMM method effectively optimizes complex 3D structures, yielding 

more efficient and superior outcomes. The implementation of this method expands the 

options and possibilities for engineering design and optimization, providing valuable 

solutions to the challenges associated with complex structural optimization. The result 

exhibits a well-defined contour, in contrast to the SIMP method, which can only 

optimize an abstract structure with noticeable mosaic jagged edges for the same mesh 

size. Furthermore, the objective function of the BMM method shows a 24% 

improvement over that of the SIMP method.
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Fig. 8. Comparing the optimization results between the BMM and SIMP methods for the 3D 

cantilever beam problem.

BMM method: 2376.2 SIMP method: 3109.3

(a) The iterative process of the BMM Method

(b) Comparison of the results between the BMM method and SIMP method
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With an equivalent number of meshes, the BMM method takes 63 seconds per 

iteration, whereas the SIMP method takes 35 seconds per iteration because the BMM 

method sacrifices time in assembling the stiffness matrix for different shaped elements 

to achieve effects that would require a finer mesh and more time consumption in classic 

methods. Moreover, other topology optimization methods are similar to direct methods 

for solving linear equations, whereas the BMM method, with its local calculation, 

resembles iterative methods, such as multigrid methods and multilevel subspace 

methods, which are well suited for large-scale parallel computations. When the scale of 

optimization is significantly large, the BMM method has more significant advantages 

over traditional approaches such as the SIMP method.

6. Conclusions and discussion

In this paper, we propose the biomimetic moving-mesh (BMM) topology 

optimization method inspired by biological cell growth and evolution. The following 

conclusions can be drawn.

1. The BMM method can solve the boundary nonsmoothness problem encountered 

in traditional pixel‒point topology optimization methods, with optimized geometric 

descriptions consistent with those of finite element analysis.

2. Through many case studies, it has been found that the BMM achieves better 

results than the SIMP and BESO methods with comparable numbers of meshes due to 

the variability of the mesh. Alternatively, the BMM can achieve equivalent results to 

those of the other methods with fewer meshes.
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3. The BMM method is a locally adaptive optimization method that is particularly 

suitable for parallel large-scale optimization compared with the overall optimization 

class of methods.

Moreover, the BMM method encounters challenges such as prolonged stiffness 

matrix formation times, the ability to handle complex sharp geometries, and the stability 

of the optimization pathway. These issues can be addressed through combined 

optimization via multiple methods. For example, initial optimization with methods such 

as SIMP, BESO, MMC, or the level set method can establish the basic topology, 

followed by detailed boundary adjustments via the BMM method to increase boundary 

smoothness and material utilization. This integrated approach capitalizes on the 

strengths and mitigates the weaknesses of various topology optimization techniques.

To facilitate a better understanding of the BMM implementation process, a 

MATLAB code example of the BMM algorithm is provided in the supplementary 

material.

Appendix

In the appendix, four more examples provide further evidence of the successful 

application of the BMM method.

MBB problem

The MBB problem is also a classic problem in topology optimization where both 
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ends are simply supported, and a downward concentrated force is applied at the center 

from above.

Fig. 9. Comparing the optimization results of different TO methods for the MBB problem.

With a volume fraction constraint of 50%, the BMM method achieves superior 

outcomes compared with both the BESO and SIMP methods for an identical 240×40 

grid size, as illustrated in Fig. 9.

Cantilever problem

The cantilever beam problem is a classic challenge in topology optimization where 

the left end is fixedly supported and the right end is subjected to a downward 

concentrated force.

(a) Comparison of optimization results of different TO methods

50

100

300

879

240

BESO

SIMP

BMM 91.9691

96.3289

93.0800

40

(b) The iterative process of the BMM Method
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Fig. 10. Comparing the optimization results of different TO methods for the cantilever problem.

With a volume fraction constraint of 50%, the BMM method achieves superior 

outcomes compared with both the BESO and SIMP methods for an identical 100×50 

grid size, as illustrated in Fig. 10.

P

100

50

BESO:31.0627 SIMP:32.2436

BMN:30.6066100

50

P

(a) Comparison of optimization results of different TO methods

(b) The iterative process of the BMM Method
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Quarter annulus problem

In this example, the design domain of a quarter annulus is segmented into annular 

meshes, establishing an initial array of periodic holes. The optimization process, 

illustrated in Fig. 11, shows that grids with curved boundaries can be effectively 

implemented within the BMM model. Owing to the dynamic grid properties of the 

BMM method, the design domain is not restricted to fixed grid types and can be 

customized to align more closely with the structural characteristics and requirements of 

the study.
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Fig. 11. The iterative process of the BMM method for the quarter annulus problem.

Other classic topological optimization problems, including the cantilever beam and 

the special cantilever beam with an optimal analytical solution, have also yielded 

superior results using the BMM method compared with traditional topological 

optimization approaches.
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Special cantilever beam problems with optimal analytic solutions

In this specific cantilever beam problem, the design domain is a 3:1 rectangle with 

a downward concentrated force applied at the midpoint of the right end. This 

configuration has an optimal analytical solution consisting of two two-force rods 

forming a 90-degree angle. According to the results depicted in Fig. 12, when a 

discretized 30 × 90 mesh with a volume fraction constraint of 20% is used, the BMM, 

BESO, and SIMP methods are all capable of achieving the standard optimal structure. 

However, the BMM method demonstrates slight superiority in terms of the objective 

function.
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Fig. 12. Comparing the optimization results of different TO methods for the special cantilever beam 

problem with optimal analytic solutions.

Notably, the results from the BMM method exhibit rounded transition details at the 

corners, whereas the SIMP method requires a mesh refinement of up to 200×600 to 

achieve comparable results. This case demonstrates that the BMM method achieves 

BESO:3.8969 BMN:3.8932SIMP:4.184830

90

(a) Comparison of optimization results of different TO methods

(b) The iterative process of the BMM Method
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equivalent optimization outcomes with fewer meshes than other classic topology 

optimization methods do.
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